可见光

可见光(Visible light)是人类可看见的电磁波,其波长范围一般是落在360 - 400 nm~760 - 830nm,这个电磁波谱又称为可见光谱(Visible spectrum),其频率范围在830 - 750THz~395 - 360THz 。这个范围因人而异,部分人群甚至可以看到310nm的紫外光或是1100nm的近红外光。

可见光(Visible light)是人类可看见的电磁波,其波长范围一般是落在360 - 400 nm~760 - 830nm,这个电磁波谱又称为可见光谱(Visible spectrum),其频率范围在830 - 750THz~395 - 360THz 。这个范围因人而异,部分人群甚至可以看到310nm的紫外光或是1100nm的近红外光。


光与可见光通常指同样的意思,但光也可以指红外光、紫外光、X光。


单个波长可见光称为单色光,粉红色或是洋红色等不饱和光是由多个单色光组成。正常视力的人眼对波长约为555纳米的可见光最为敏感,这种可见光处于光学频谱的绿光区域。


可见光可以穿透地球大气层的大气窗,这也是人眼可以辨识此波段的原因之一。


可见光谱历史


1704年,牛顿提出牛顿色环,显示了音符相对应的颜色。

13世纪,罗杰·培根提出彩虹形成的过程与光线透过玻璃或水晶的情况类似。17世纪,牛顿发现棱镜可以分解和重组白光,并将这发现写在《光学》著作上。


早期对光谱的2种解说来自于艾萨克·牛顿的光学和歌德的色彩学。牛顿首先在1671年在他的光学试验的说明中使用了光谱这个字(在拉丁文中代表外观、显象)。牛顿观察到一束阳光以一个角度射入玻璃棱镜,部分会被反射,部分则穿透玻璃,并呈现出不同的色带。牛顿假定阳光是由不同颜色的小粒子组成,而这些不同颜色在穿透物质时,前进速度不同。而红光的速度快于紫光,而导致了在穿过棱镜后红光的偏折(折射)较紫光为小,产生各色的光谱。


牛顿把光谱分成7种颜色:红、橙、黄、绿、蓝、靛、紫。他依古希腊哲学家的想法,选这7种颜色,并和音符、太阳系已知的7颗行星、和一周7天做连结。然而人眼对于靛色频率的敏感度其实是相对较差的,加之一些辨色能力正常的人都表示他们无法区分靛色和蓝色、紫色。正因此之故,一些专家如艾萨克·阿西莫夫等都曾建议靛色不应被视为颜色,它只是蓝和紫的浓淡不同的区间而已。有证据表明,牛顿当年提出的蓝色、靛色与现代定义不同,当年的蓝色是青色,而靛色是蓝色。


18世纪,歌德在他的色彩学提到了光谱,歌德使用光谱代表残影。哥德声称连续光谱是个复合现象,而牛顿则认为仅限可见光光谱是个单独现象,哥德观察到了更广泛的部分,他发现到了没有光谱的区间,如红黄边界和青蓝边界是白的,原来在边界区会有色光重叠的现象。19世纪,因为红外光与紫外光的发现,可见光谱概念更加明确。1802年,杨第一次测量不同颜色可见光的波长。


可见感知


人眼可以看见的光的范围受大气层影响。大气层对于大部分的电磁波辐射来讲都是不透明的,只有可见光波段和其他少数如无线电通讯波段等例外。不少其他生物能看见的光波范围跟人类不一样,例如包括蜜蜂在内的一些昆虫能看见紫外线波段,对于寻找花蜜有很大帮助。


光谱中并不能包含所有人眼和脑可以识别的颜色,如棕色、粉红、紫红等,因为它们需要由多种光波混合,以调整红的浓淡。


可见光的波长可以穿透光学窗口,也就是可穿透地球大气层而衰减不多的电磁波范围(蓝光散射的情况较红光为严重,这也正是为何我们看到天空是蓝色的)。人眼对可见光的反应是主观的定义方式(参见CIE),但是大气层的窗口则是用物理量测方式来定义。之所以称为可见光窗口是因为它正好涵盖了人眼可见的光谱。近红外线(NIR)窗口刚好在人眼可见区段之外,中波长红外线(MWIR)和远红外线(LWIR、FIR)则较人眼可见区段较远。


可见光源


可见光的主要天然光源是太阳,主要人工光源是白炽物体(特别是白炽灯)。它们所发射的可见光谱是连续的。气体放电管也发射可见光,其光谱是分立的。常利用各种气体放电管加滤光片作为单色光源。


光谱色

我们所熟知的彩虹般的光谱,包括了所有单一波长的可见光,也就是纯粹的单色光。尽管是连续光谱,相邻两色间并没有明显的界限,上述所列的波长区间是常用的近似值。

上一篇
下一篇
在线客服